Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 365
Filtrar
1.
J Stroke Cerebrovasc Dis ; 32(9): 107266, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37481938

RESUMO

OBJECTIVES: Overactivation of neuroinflammation can worsen the prognosis of subarachnoid hemorrhage (SAH) patients. CXCR2 is a widely expressed G protein-coupled receptor that participates in the regulation of inflammation, indicating a potential role of CXCR2 in SAH. MATERIALS AND METHODS: Herein, we examined the expression pattern of CXCR2 in the ipsilateral brain tissue of SAH mice. Then, we evaluated the effects of CXCR2 antagonist on neuroinflammation and neurological function after SAH. RESULTS: Western blotting and immunohistochemistry revealed that CXCR2 expression was upregulated following SAH. Our results demonstrated that treatment with SB225002 inhibited inflammatory cytokine (IL-1ß, IL-6, TNF-α, MCP-1) production in the brain and cerebrospinal fluid (CSF) following SAH. Our further findings confirmed that treatment with SB225002 ameliorated astrocytosis and microgliosis after SAH. Interestingly, SB225002 significantly improved neurological impairment after SAH. CONCLUSIONS: Altogether, these results suggest that pharmacologically targeting CXCR2 may be an effective disease-modifying treatment for SAH.


Assuntos
Doenças Neuroinflamatórias , Receptores de Interleucina-8B , Hemorragia Subaracnóidea , Animais , Camundongos , Transdução de Sinais , Hemorragia Subaracnóidea/complicações , Hemorragia Subaracnóidea/tratamento farmacológico , Hemorragia Subaracnóidea/metabolismo , Receptores de Interleucina-8B/antagonistas & inibidores , Receptores de Interleucina-8B/metabolismo
2.
Molecules ; 28(5)2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36903345

RESUMO

Upregulated CXCR2 signalling is found in numerous inflammatory, autoimmune and neurodegenerative diseases, as well as in cancer. Consequently, CXCR2 antagonism is a promising therapeutic strategy for treatment of these disorders. We previously identified, via scaffold hopping, a pyrido[3,4-d]pyrimidine analogue as a promising CXCR2 antagonist with an IC50 value of 0.11 µM in a kinetic fluorescence-based calcium mobilization assay. This study aims at exploring the structure-activity relationship (SAR) and improving the CXCR2 antagonistic potency of this pyrido[3,4-d]pyrimidine via systematic structural modifications of the substitution pattern. Almost all new analogues completely lacked the CXCR2 antagonism, the exception being a 6-furanyl-pyrido[3,4-d]pyrimidine analogue (compound 17b) that is endowed with similar antagonistic potency as the original hit.


Assuntos
Neoplasias , Receptores de Quimiocinas , Receptores de Interleucina-8B , Humanos , Pirimidinas/química , Receptores de Quimiocinas/antagonistas & inibidores , Relação Estrutura-Atividade , Receptores de Interleucina-8B/antagonistas & inibidores
3.
Pharmacol Biochem Behav ; 217: 173408, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35644272

RESUMO

Autism spectrum disorders is a complex neurodevelopmental disorder characterized by abnormal social interaction, defective communication, repetitive and stereotyped patterns of behaviors or interests. The BTBR T+ Itpr3tf/J (BTBR) inbred mice are generally used as a model for ASD, display a range of autistic phenotypes. Recent studies suggest that the CXCR2 antagonist is crucial for targets in the treatment of inflammatory and neurodegenerative diseases. In this study, we investigated the potential effects of the CXCR2 antagonist SB332235 on sociability behaviors, marble burying, and self-grooming, we also explored the treatment of SB332235 on Th1 (IFN-γ, Stat1, and T-bet), Th22 (IL-22, TNF-α, and AhR), and T regulatory (Treg, IL-10, Helios and Foxp3) production in CD4+ T cells in male BTBR and C57BL/6 (C57) mice in spleen. We also investigated the effects of SB332235 on IFN-γ, IL-10, IL-22, T-bet, AhR, and Foxp3 mRNA expression levels in the brain tissues. The SB332235-treated mice significantly improve behavioral abnormalities in BTBR mice. In addition, SB332235 administration causes a significantly decreases in IFN-γ, Stat1, T-bet, IL-22, TNF-α, and AhR, and increases in IL-10, Foxp3 and Helios production CD4+ T cells in BTBR mice. We further observed that SB332235 downregulated IFN-γ, IL-10, IL-22, T-bet, and AhR, and upregulated IL-10 and Foxp3 mRNA expression in the brain tissues. Our findings demonstrated that SB332235 treatment attenuated behavior deficits, through inhibiting Th1/Th22 and upregulating Treg cell-related transcription factors signaling pathway. Therefore, CXCR2 antagonist administration may be a promising therapeutic agent to attenuate behavior deficits via its anti-inflammatory effect.


Assuntos
Transtorno Autístico , Receptores de Interleucina-8B , Comportamento Social , Sulfonamidas , Linfócitos T Reguladores , Animais , Citocinas/metabolismo , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , RNA Mensageiro/metabolismo , Receptores de Interleucina-8B/antagonistas & inibidores , Receptores de Interleucina-8B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sulfonamidas/farmacologia , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/metabolismo , Células Th1/efeitos dos fármacos , Células Th1/metabolismo , Células Th1/patologia
4.
Br J Anaesth ; 128(2): 283-293, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34893315

RESUMO

BACKGROUND: Neutrophil extracellular traps (NETs) facilitate bacterial clearance but also promote thrombosis and organ injury in sepsis. We quantified ex vivo NET induction in septic humans and murine models of sepsis to identify signalling pathways that may be modulated to improve outcome in human sepsis. METHODS: NET formation in human donor neutrophils was quantified after incubation with plasma obtained from patients with sepsis or systemic inflammation (double-blinded assessment of extracellular DNA using immunofluorescence microscopy). NET formation (% neutrophils forming NETs) was correlated with plasma cytokine levels (MultiPlex assay). Experimental sepsis (caecal ligation and puncture or intraperitoneal injection of Escherichia coli) was assessed in C57/BL6 male mice. The effect of pharmacological inhibition of CXCR1/2 signalling (reparixin) on NET formation, organ injury (hepatic, renal, and cardiac biomarkers), and survival in septic mice was examined. RESULTS: NET formation was higher after incubation with plasma from septic patients (median NETs=25% [10.5-46.5%]), compared with plasma obtained from patients with systemic inflammation (14% [4.0-23.3%]; P=0.02). Similar results were observed after incubation of plasma from mice with neutrophils from septic non-septic mice. Circulating CXCR1/2 ligands correlated with NETosis in patients (interleukin-8; r=0.643) and mice (macrophage inflammatory protein-2; r=0.902). In experimental sepsis, NETs were primarily observed in the lungs, correlating with fibrin deposition (r=0.702) and lung injury (r=0.692). Inhibition of CXCR1/2 using reparixin in septic mice reduced NET formation, multi-organ injury, and mortality, without impairing bacterial clearance. CONCLUSION: CXCR1/2 signalling-induced NET formation is a therapeutic target in sepsis, which may be guided by ex vivo NET assays.


Assuntos
Armadilhas Extracelulares/metabolismo , Inflamação/complicações , Sepse/complicações , Sulfonamidas/farmacologia , Trombose/prevenção & controle , Animais , Citocinas/metabolismo , Modelos Animais de Doenças , Humanos , Inflamação/tratamento farmacológico , Lesão Pulmonar/etiologia , Lesão Pulmonar/prevenção & controle , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/metabolismo , Receptores de Interleucina-8A/antagonistas & inibidores , Receptores de Interleucina-8B/antagonistas & inibidores , Estudos Retrospectivos , Sepse/tratamento farmacológico , Sepse/mortalidade , Trombose/etiologia
5.
Cancer Discov ; 12(1): 47-61, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34353854

RESUMO

SHP2 inhibitors (SHP2i) alone and in various combinations are being tested in multiple tumors with overactivation of the RAS/ERK pathway. SHP2 plays critical roles in normal cell signaling; hence, SHP2is could influence the tumor microenvironment. We found that SHP2i treatment depleted alveolar and M2-like macrophages, induced tumor-intrinsic CCL5/CXCL10 secretion, and promoted B and T lymphocyte infiltration in Kras- and Egfr-mutant non-small cell lung cancer (NSCLC). However, treatment also increased intratumor granulocytic myeloid-derived suppressor cells (gMDSC) via tumor-intrinsic, NFκB-dependent production of CXCR2 ligands. Other RAS/ERK pathway inhibitors also induced CXCR2 ligands and gMDSC influx in mice, and CXCR2 ligands were induced in tumors from patients on KRASG12C inhibitor trials. Combined SHP2 (SHP099)/CXCR1/2 (SX682) inhibition depleted a specific cluster of S100a8/9 hi gMDSCs, generated Klrg1 + CD8+ effector T cells with a strong cytotoxic phenotype but expressing the checkpoint receptor NKG2A, and enhanced survival in Kras- and Egfr-mutant models. Our results argue for testing RAS/ERK pathway/CXCR1/2/NKG2A inhibitor combinations in patients with NSCLC. SIGNIFICANCE: Our study shows that inhibiting the SHP2/RAS/ERK pathway triggers NFκB-dependent upregulation of CXCR2 ligands and recruitment of S100A8hi gMDSCs, which suppress T cells. Combining SHP2/CXCR2 inhibitors blocks gMDSC immigration, resulting in enhanced Th1 polarization, induced CD8+KLRG1+ effector T cells with high cytotoxic activity, and improved survival in multiple NSCLC models.This article is highlighted in the In This Issue feature, p. 1.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Inibidores Enzimáticos/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Proteína Tirosina Fosfatase não Receptora Tipo 11/antagonistas & inibidores , Receptores de Interleucina-8B/antagonistas & inibidores , Animais , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Inibidores Enzimáticos/uso terapêutico , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microambiente Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Bosn J Basic Med Sci ; 22(2): 217-228, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-34813418

RESUMO

Emerging evidence has shown that protocatechuic acid (PCA) has antioxidant and anti-inflammatory effects. It can alleviate the injury of sciatic nerve, while the mechanism of its therapeutic effect on neuralgia remains unknown . In vivo, chromium bowel ligation was used to establish a chronic constriction injury (CCI) rat model to induce sciatic nerve pain, then two doses of PCA were used to treat CCI rats. In vitro, 10 ng/mL TNF-α was used to stimulate glial satellite cells derived from the dorsal root ganglia (DRG) L4-L6 of the sciatic nerve to simulate sciatic nerve pain. PCA relieved mechanical allodynia and thermal hyperalgesia in CCI rats. CCK-8 assay revealed that PCA inhibited the proliferation of glial satellite cells induced by TNF-α. Moreover, ELISA demonstrated that PCA could improve the inflammatory response of rats caused by CCI and cells induced by TNF-α. Next, RT-qPCR and Western blot assays testified that PCA blocked the c-Jun N-terminal kinase/the chemokine ligand 1/CXC chemokine receptor 2 (JNK/CXCL1/CXCR2) pathway by inhibiting CXCL1 levels in cells induced by TNF-α and DRG of CCI rats. In conclusion, PCA can alleviate neuropathic pain of CCI rats, improve oxidative stress by inhibiting the JNK/CXCL1/CXCR2 signaling pathway, which provides a new perspective for the treatment of neuropathic pain caused by CCI.


Assuntos
Quimiocina CXCL1 , Hidroxibenzoatos , Sistema de Sinalização das MAP Quinases , Neuralgia , Receptores de Interleucina-8B , Animais , Quimiocina CXCL1/antagonistas & inibidores , Hiperalgesia/tratamento farmacológico , Hiperalgesia/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Neuralgia/tratamento farmacológico , Ratos , Receptores de Interleucina-8B/antagonistas & inibidores
7.
J Neuroinflammation ; 18(1): 306, 2021 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-34963475

RESUMO

BACKGROUND: Pathological interactions between ß-amyloid (Aß) and tau drive synapse loss and cognitive decline in Alzheimer's disease (AD). Reactive astrocytes, displaying altered functions, are also a prominent feature of AD brain. This large and heterogeneous population of cells are increasingly recognised as contributing to early phases of disease. However, the contribution of astrocytes to Aß-induced synaptotoxicity in AD is not well understood. METHODS: We stimulated mouse and human astrocytes with conditioned medium containing concentrations and species of human Aß that mimic those in human AD brain. Medium from stimulated astrocytes was collected and immunodepleted of Aß before being added to naïve rodent or human neuron cultures. A cytokine, identified in unbiased screens of stimulated astrocyte media and in postmortem human AD brain lysates was also applied to neurons, including those pre-treated with a chemokine receptor antagonist. Tau mislocalisation, synaptic markers and dendritic spine numbers were measured in cultured neurons and organotypic brain slice cultures. RESULTS: We found that conditioned medium from stimulated astrocytes induces exaggerated synaptotoxicity that is recapitulated following spiking of neuron culture medium with recombinant C-X-C motif chemokine ligand-1 (CXCL1), a chemokine upregulated in AD brain. Antagonism of neuronal C-X-C motif chemokine receptor 2 (CXCR2) prevented synaptotoxicity in response to CXCL1 and Aß-stimulated astrocyte secretions. CONCLUSIONS: Our data indicate that astrocytes exacerbate the synaptotoxic effects of Aß via interactions of astrocytic CXCL1 and neuronal CXCR2 receptors, highlighting this chemokine-receptor pair as a novel target for therapeutic intervention in AD.


Assuntos
Doença de Alzheimer/genética , Peptídeos beta-Amiloides/toxicidade , Astrócitos/patologia , Quimiocina CXCL1/antagonistas & inibidores , Quimiocina CXCL1/química , Sinapses/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Células Cultivadas , Meios de Cultivo Condicionados , Espinhas Dendríticas/patologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Neurônios/efeitos dos fármacos , Receptores de Interleucina-8B/antagonistas & inibidores , Proteínas tau/química , Proteínas tau/toxicidade
8.
J Med Chem ; 64(22): 16626-16640, 2021 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-34676759

RESUMO

Increasing evidence shows that the CXC chemokine receptor 2 (CXCR2) signaling pathway is essentially implicated in the recruitment of myeloid-derived suppressor cells (MDSCs) to the tumor microenvironment and leads to MDSC-mediated immune suppression. Therefore, CXCR2 has recently emerged as a promising drug target for cancer immunotherapy. In this paper, benzocyclic sulfone derivatives were designed as potent CXCR2 antagonists. Structure-activity relationship studies resulted in two lead compounds 9b and 11h, which demonstrated double-digit nanomolar potencies against CXCR2 and significantly inhibited neutrophil infiltration into the air pouch in an in vivo setting. More importantly, 9b and 11h dose-dependently inhibited the tumor growth through oral administration in the Pan02 mouse model. Further cytometry and immunohistochemical analyses revealed that 9b and 11h could reduce the infiltration of neutrophils and MDSCs and enhance the infiltration of CD3+ T lymphocytes into the Pan02 tumor tissues, shedding light on their mechanisms of action in cancer immunotherapy.


Assuntos
Antineoplásicos/farmacologia , Terapia de Imunossupressão , Imunossupressores/farmacologia , Neoplasias/tratamento farmacológico , Receptores de Interleucina-8B/antagonistas & inibidores , Sulfonas/farmacologia , Antineoplásicos/química , Humanos , Imunossupressores/química , Imunoterapia , Sulfonas/química , Microambiente Tumoral
9.
Int J Mol Sci ; 22(20)2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34681732

RESUMO

Recent findings have highlighted the roles of CXC chemokine family in the mechanisms of neuropathic pain. Our studies provide evidence that single/repeated intrathecal administration of CXCR2 (NVP-CXCR2-20) and CXCR3 ((±)-NBI-74330) antagonists explicitly attenuated mechanical/thermal hypersensitivity in rats after chronic constriction injury of the sciatic nerve. After repeated administration, both antagonists showed strong analgesic activity toward thermal hypersensitivity; however, (±)-NBI-74330 was more effective at reducing mechanical hypersensitivity. Interestingly, repeated intrathecal administration of both antagonists decreased the mRNA and/or protein levels of pronociceptive interleukins (i.e., IL-1beta, IL-6, IL-18) in the spinal cord, but only (±)-NBI-74330 decreased their levels in the dorsal root ganglia after nerve injury. Furthermore, only the CXCR3 antagonist influenced the spinal mRNA levels of antinociceptive factors (i.e., IL-1RA, IL-10). Additionally, antagonists effectively reduced the mRNA levels of pronociceptive chemokines; NVP-CXCR2-20 decreased the levels of CCL2, CCL6, CCL7, and CXCL4, while (±)-NBI-74330 reduced the levels of CCL3, CCL6, CXCL4, and CXCL9. Importantly, the results obtained from the primary microglial and astroglial cell cultures clearly suggest that both antagonists can directly affect the release of these ligands, mainly in microglia. Interestingly, NVP-CXCR2-20 induced analgesic effects after intraperitoneal administration. Our research revealed important roles for CXCR2 and CXCR3 in nociceptive transmission, especially in neuropathic pain.


Assuntos
Acetamidas/farmacologia , Analgésicos/farmacologia , Regulação para Baixo/efeitos dos fármacos , Pirimidinas/farmacologia , Receptores CXCR3/antagonistas & inibidores , Receptores de Interleucina-8B/antagonistas & inibidores , Acetamidas/uso terapêutico , Analgésicos/uso terapêutico , Animais , Astrócitos/citologia , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Comportamento Animal/efeitos dos fármacos , Células Cultivadas , Quimiocina CCL3/genética , Quimiocina CCL3/metabolismo , Gânglios Espinais/metabolismo , Gânglios Espinais/patologia , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Masculino , Microglia/citologia , Microglia/efeitos dos fármacos , Microglia/metabolismo , Neuralgia/induzido quimicamente , Neuralgia/tratamento farmacológico , Neuralgia/patologia , Pirimidinas/uso terapêutico , Ratos , Ratos Wistar , Receptores CXCR3/metabolismo , Receptores de Interleucina-8B/metabolismo , Medula Espinal/metabolismo , Medula Espinal/patologia , Estresse Mecânico
10.
Eur J Med Chem ; 226: 113812, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34536673

RESUMO

Chemokine receptor 2 (CXCR2) is the receptor of glutamic acid-leucine-arginine sequence-contained chemokines CXCs (ELR+ CXCs). In recent years, CXCR2-target treatment strategy has come a long way in cancer therapy. CXCR2 antagonists could block CXCLs/CXCR2 axis, and are widely used in regulating immune cell migration, tumor metastasis, apoptosis and angiogenesis. Herein, two series of new CXCR2 small-molecule inhibitors, including 1,2,4-triazol-3-one derivatives 1-11 and pyridazinone derivatives 12-22 were designed and synthesized based on the proof-to-concept. The pyridazinone derivative 18 exhibited good CXCR2 antagonistic activity (69.4 ± 10.5 %Inh at 10 µM) and demonstrated its significant anticancer metastasis activity in MDA-MB-231 cells and remarkable anti-angiogenesis activity in HUVECs. Furthermore, noteworthy was that 18 exhibited an obvious synergistic effect with Sorafenib in anti-proliferation assay in MDA-MB-231 cells. Moreover, 18 showed a distinct reduction of the phosphorylation levels of both PI3K and AKT proteins in MDA-MB-231 cells, and also affected the expression levels of other PI3K/AKT signaling pathway-associated proteins. The molecular docking studies of 18 with CXCR2 also verified the rationality of our design strategy. All of these results revealed pyridazinone derivative 18 as a promising CXCR2 antagonist for future cancer therapy.


Assuntos
Antineoplásicos/farmacologia , Desenho de Fármacos , Piridazinas/farmacologia , Receptores de Interleucina-8B/antagonistas & inibidores , Triazóis/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Piridazinas/síntese química , Piridazinas/química , Receptores de Interleucina-8B/metabolismo , Relação Estrutura-Atividade , Triazóis/síntese química , Triazóis/química
11.
Cells ; 10(9)2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34571976

RESUMO

Type 2 diabetes mellitus is a severe public health issue worldwide. It displays a harmful effect on different organs as the eyes, kidneys and neural cells due to insulin resistance and high blood glucose concentrations. To date, the available treatments for this disorder remain limited. Several reports have correlated obesity with type 2 diabetes. Mainly, dysfunctional adipocytes and the regulation of high secretion of inflammatory cytokines are the crucial links between obesity and insulin resistance. Several clinical and epidemiological studies have also correlated the onset of type 2 diabetes with inflammation, which is now indicated as a new target for type 2 diabetes treatment. Thus, it appears essential to discover new drugs able to inhibit the secretion of proinflammatory adipocytokines in type 2 diabetes. Adipocytes produce inflammatory cytokines in response to inflammation or high glucose levels. Once activated by a specific ligand, CXCR1 and CXCR2 mediate some cytokines' effects by activating an intracellular signal cascade once activated by a specific ligand. Therefore, it is conceivable to hypothesize that a specific antagonist of these receptors may ameliorate type 2 diabetes and glucose metabolism. Herein, differentiated 3T3-L1-adipocytes were subjected to high glucose or inflammatory conditions or the combination of both and then treated with ladarixin, a CXCR1/2 inhibitor. The results obtained point towards the positive regulation by ladarixin on insulin sensitivity, glucose transporters GLUT1 and GLUT4, cytokine proteome profile and lipid metabolism, thus suggesting ladarixin as a potentially helpful treatment in type 2 diabetes mellitus and obesity.


Assuntos
Inflamação/tratamento farmacológico , Resistência à Insulina/fisiologia , Insulina/metabolismo , Receptores de Interleucina-8B/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Sulfonamidas/farmacologia , Células 3T3-L1 , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Adipocinas/metabolismo , Animais , Linhagem Celular , Citocinas/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Glucose/metabolismo , Inflamação/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Camundongos , Células RAW 264.7
12.
J Dermatol Sci ; 104(1): 30-38, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34479772

RESUMO

BACKGROUND: Organ transplant recipients show a high incidence for the formation of cutaneous squamous cell carcinoma (cSCC), while sirolimus appears to reduce the risk. GRO-α is a chemokine, which is overexpressed in many tumor entities and associated with malignant transformation. However, little is known about the expression and function of GRO-α in human cSCC. OBJECTIVE: Our aim was to investigate the relevance of the GRO-α (CXCL-1)/ CXCR2 axis in human cSCC and the potential impact of sirolimus. METHODS: We analyzed the GRO-α expression in human keratinocytes, different cSCC cell lines as well as cSCC tissue and investigated its effect on cell proliferation and migration. Additionally, we incubated cells with sirolimus and measured the expression of GRO-α and its receptor CXCR2. RESULTS: We showed that both constitutive as well as induced GRO-α expression is higher in in cSCC cell lines compared to keratinocytes and that GRO-α protein is detectable in human cSCC tissue. By GRO-α exposure and shRNA knock down, we identified GRO-α as a driving factor in proliferation and migration. Moreover, in a dermis equivalent GRO-α knocked down cSCC cell lines displayed a reduced capacity in tumor nest formation. Incubation with sirolimus significantly inhibited GRO-α expression in keratinocytes as well as tumor cell lines. Moreover, sirolimus decreased the expression of the corresponding receptor CXCR2. CONCLUSION: Taken together, our results suggest that the GRO-α/CXCR2 axis plays a role in human keratinocyte carcinogenesis and might represent a molecular mechanism for the preventive effect of mTOR inhibitors in cSCC development.


Assuntos
Carcinoma de Células Escamosas/prevenção & controle , Quimiocina CXCL1/metabolismo , Inibidores de MTOR/farmacologia , Receptores de Interleucina-8B/metabolismo , Neoplasias Cutâneas/prevenção & controle , Carcinogênese/efeitos dos fármacos , Carcinogênese/imunologia , Carcinoma de Células Escamosas/imunologia , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Quimiocina CXCL1/antagonistas & inibidores , Quimiocina CXCL1/genética , Técnicas de Silenciamento de Genes , Humanos , Queratinócitos/efeitos dos fármacos , Queratinócitos/imunologia , Queratinócitos/metabolismo , Inibidores de MTOR/uso terapêutico , Receptores de Interleucina-8B/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Sirolimo/farmacologia , Sirolimo/uso terapêutico , Neoplasias Cutâneas/imunologia , Neoplasias Cutâneas/patologia
13.
Anaerobe ; 72: 102458, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34547426

RESUMO

Porphyromonas gingivalis inhibits the release of CXCL8 by gingival epithelial cells and reduces their proliferation. We previously reported that Bifidocaterium sp. and Lactobacillus sp. immunomodulate gingival epithelial cells response to this periodontal pathogen, but their effects on re-epithelialization properties are still unknown. Herein we explored these activities of potential probiotics on gingival epithelial cells and clarified their mechanisms. The immortalized OBA-9 lineage was used to perform in vitro scratches. Twelve clinical isolates and commercially available strains of Bifidobacterium sp. and Lactobacillus sp. were screened. L. casei 324 m and B. pseudolongum 1191A were selected to perform mechanistic assays with P. gingivalis W83 infection and the following parameters were measured: percentage of re-epithelialization by DAPI immunofluorescence area measurement; cell number by Trypan Blue exclusion assay; CXCL8 regulation by ELISA and RT-qPCR; and expression of CXCL8 cognate receptors-CXCR1 and CXCR2 by Flow Cytometry. Complementary mechanistic assays were performed with CXCL8, in the presence or absence of the CXCR1/CXCR2 inhibitor-reparixin. L. casei 324 m and B. pseudolongum 1191A enhanced re-epithelialization/cell proliferation as well as inhibited the harmful effects of P. gingivalis W83 on these activities through an increase in the expression and release of CXCL8 and in the number of cells positive for CXCR1/CXCR2. Further, we revealed that the beneficial effects of these potential probiotics were dependent on activation of the CXCL8-CXCR1/CXCR2 axis. The current findings indicate that these potential probiotics strains may improve wound healing in the context of the periodontal tissues by a CXCL8 dependent mechanism.


Assuntos
Infecções por Bacteroidaceae/metabolismo , Infecções por Bacteroidaceae/microbiologia , Interações Hospedeiro-Patógeno , Interações Microbianas , Porphyromonas gingivalis , Probióticos/administração & dosagem , Reepitelização , Biomarcadores , Linhagem Celular , Regulação da Expressão Gênica , Humanos , Interleucina-8/genética , Interleucina-8/metabolismo , Receptores de Interleucina-8A/antagonistas & inibidores , Receptores de Interleucina-8A/genética , Receptores de Interleucina-8A/metabolismo , Receptores de Interleucina-8B/antagonistas & inibidores , Receptores de Interleucina-8B/genética , Receptores de Interleucina-8B/metabolismo , Transdução de Sinais , Cicatrização
14.
Neurobiol Dis ; 158: 105468, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34358616

RESUMO

CXCL1, a functional murine orthologue of the human chemokine CXCL8 (IL-8), and its CXCR1 and CXCR2 receptors were investigated in a murine model of acquired epilepsy developing following status epilepticus (SE) induced by intra-amygdala kainate. CXCL8 and its receptors were also studied in human temporal lobe epilepsy (TLE). The functional involvement of the chemokine in seizure generation and neuronal cell loss was assessed in mice using reparixin (formerly referred to as repertaxin), a non-competitive allosteric inhibitor of CXCR1/2 receptors. We found a significant increase in hippocampal CXCL1 level within 24 h of SE onset that lasted for at least 1 week. No changes were measured in blood. In analogy with human TLE, immunohistochemistry in epileptic mice showed that CXCL1 and its two receptors were increased in hippocampal neuronal cells. Additional expression of these molecules was found in glia in human TLE. Mice were treated with reparixin or vehicle during SE and for additional 6 days thereafter, using subcutaneous osmotic minipumps. Drug-treated mice showed a faster SE decay, a reduced incidence of acute symptomatic seizures during 48 h post-SE, and a delayed time to spontaneous seizures onset compared to vehicle controls. Upon reparixin discontinuation, mice developed spontaneous seizures similar to vehicle mice, as shown by EEG monitoring at 14 days and 2.5 months post-SE. In the same epileptic mice, reparixin reduced neuronal cell loss in the hippocampus vs vehicle-injected mice, as assessed by Nissl staining at completion of EEG monitoring. Reparixin administration for 2 weeks in mice with established chronic seizures, reduced by 2-fold on average seizure number vs pre-treatment baseline, and this effect was reversible upon drug discontinuation. No significant changes in seizure number were measured in vehicle-injected epileptic mice that were EEG monitored in parallel. Data show that CXCL1-IL-8 signaling is activated in experimental and human epilepsy and contributes to acute and chronic seizures in mice, therefore representing a potential new target to attain anti-ictogenic effects.


Assuntos
Quimiocina CXCL1/genética , Epilepsia do Lobo Temporal/genética , Receptores de Interleucina-8A/genética , Receptores de Interleucina-8B/genética , Convulsões/genética , Animais , Quimiocina CXCL1/antagonistas & inibidores , Eletroencefalografia , Epilepsia do Lobo Temporal/fisiopatologia , Hipocampo/metabolismo , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neuroglia/metabolismo , Neuroglia/patologia , Neurônios/metabolismo , Neurônios/patologia , Receptores de Interleucina-8A/antagonistas & inibidores , Receptores de Interleucina-8B/antagonistas & inibidores , Convulsões/fisiopatologia , Estado Epiléptico/genética , Estado Epiléptico/patologia , Sulfonamidas/farmacologia
15.
Biochem Pharmacol ; 190: 114658, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34146540

RESUMO

Chronic myeloid leukemia (CML) is a reciprocal translocation disorder driven by a breakpoint cluster region (BCR)-Abelson leukemia virus (ABL) fusion gene that stimulates abnormal tyrosine kinase activity. Tyrosine kinase inhibitors (TKIs) are effective in treating Philadelphia chromosome (Ph) + CML patients. However, the appearance of TKI-resistant CML cells is a hurdle in CML treatment. Therefore, it is necessary to identify novel alternative treatments targeting tyrosine kinases. This study was designed to determine whether C-X-C chemokine receptor 2 (CXCR2) could be a novel target for TKI-resistant CML treatment. Interleukin 8 (IL-8), a CXCR2 ligand, was significantly increased in the bone marrow serum of initially diagnosed CML patients and TKI-resistant CML cell conditioned media. CXCR2 antagonists suppressed the proliferation of CML cells via cell cycle arrest in the G2/M phase. CXCR2 inhibition also attenuated mTOR, c-Myc, and BCR-ABL expression, leading to CML cell apoptosis, irrespective of TKI responsiveness. Moreover, SB225002, a CXCR2 antagonist, caused higher cell death in TKI-resistant CML cells than TKIs. Using a mouse xenograft model, we confirmed that SB225002 suppresses tumor growth, with a prominent effect on TKI-resistant CML cells. Our findings demonstrate that IL-8 is a prognostic factor for the progression of CML. Inhibiting the CXCR2-mTOR-c-Myc cascade is a promising therapeutic strategy to overcome TKI-sensitive and TKI-insensitive CML. Thus, CXCR2 blockade is a novel therapeutic strategy to treat CML, and SB225002, a commercially available CXCR2 antagonist, might be a candidate drug that could be used to treat TKI-resistant CML.


Assuntos
Antineoplásicos/farmacologia , Sistemas de Liberação de Medicamentos , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Proteínas Tirosina Quinases/antagonistas & inibidores , Receptores de Interleucina-8B/antagonistas & inibidores , Receptores de Interleucina-8B/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Mesilato de Imatinib/farmacologia , Interleucina-8/genética , Interleucina-8/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Masculino , Pessoa de Meia-Idade , Compostos de Fenilureia/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/farmacologia , Receptores de Interleucina-8B/genética , Triazóis/farmacologia , Adulto Jovem
16.
Front Immunol ; 12: 679856, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34135907

RESUMO

Neutrophil trafficking, homeostatic and pathogen elicited, depends upon chemoattractant receptors triggering heterotrimeric G-protein Gαißγ signaling, whose magnitude and kinetics are governed by RGS protein/Gαi interactions. RGS proteins typically limit Gαi signaling by reducing the duration that Gαi subunits remain GTP bound and able to activate downstream effectors. Yet how in totality RGS proteins shape neutrophil chemoattractant receptor activated responses remains unclear. Here, we show that C57Bl/6 mouse neutrophils containing a genomic knock-in of a mutation that disables all RGS protein-Gαi2 interactions (G184S) cannot properly balance chemoattractant receptor signaling, nor appropriately respond to inflammatory insults. Mutant neutrophils accumulate in mouse bone marrow, spleen, lung, and liver; despite neutropenia and an intrinsic inability to properly mobilize from the bone marrow. In vitro they rapidly adhere to ICAM-1 coated plates, but in vivo they poorly adhere to blood vessel endothelium. Those few neutrophils that cross blood vessels and enter tissues migrate haphazardly. Following Concanavalin-A administration fragmented G184S neutrophils accumulate in liver sinusoids leading to thrombo-inflammation and perivasculitis. Thus, neutrophil Gαi2/RGS protein interactions both limit and facilitate Gαi2 signaling thereby promoting normal neutrophil trafficking, aging, and clearance.


Assuntos
Senescência Celular , Quimiotaxia de Leucócito , Subunidade alfa Gi2 de Proteína de Ligação ao GTP/genética , Subunidade alfa Gi2 de Proteína de Ligação ao GTP/metabolismo , Neutrófilos/imunologia , Neutrófilos/metabolismo , Transdução de Sinais , Animais , Transplante de Medula Óssea , Senescência Celular/genética , Senescência Celular/imunologia , Quimiotaxia de Leucócito/efeitos dos fármacos , Quimiotaxia de Leucócito/genética , Quimiotaxia de Leucócito/imunologia , Humanos , Imunofenotipagem , Masculino , Camundongos , Neutropenia/etiologia , Neutrófilos/efeitos dos fármacos , Receptores CXCR4/antagonistas & inibidores , Receptores CXCR4/metabolismo , Receptores de Interleucina-8B/antagonistas & inibidores , Receptores de Interleucina-8B/metabolismo
17.
Am J Transplant ; 21(11): 3714-3724, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34033222

RESUMO

Several cytokines and chemokines are elevated after islet infusion in patients undergoing total pancreatectomy with islet autotransplantation (TPIAT), including CXCL8 (also known as interleukin-8), leading to islet loss. We investigated whether use of reparixin for blockade of the CXCL8 pathway would improve islet engraftment and insulin independence after TPIAT. Adults without diabetes scheduled for TPIAT at nine academic centers were randomized to a continuous infusion of reparixin or placebo (double-blinded) for 7 days in the peri-transplant period. Efficacy measures included insulin independence (primary), insulin dose, hemoglobin A1c (HbA1c ), and mixed meal tolerance testing. The intent-to-treat population included 102 participants (age 39.5 ± 12.2 years, 69% female), n = 50 reparixin-treated, n = 52 placebo-treated. The proportion insulin-independent at Day 365 was similar in reparixin and placebo: 20% vs. 21% (p = .542). Twenty-seven of 42 (64.3%) in the reparixin group and 28/45 (62.2%) in the placebo group maintained HbA1c ≤6.5% (p = .842, Day 365). Area under the curve C-peptide from mixed meal testing was similar between groups, as were adverse events. In conclusion, reparixin infusion did not improve diabetes outcomes. CXCL8 inhibition alone may be insufficient to prevent islet damage from innate inflammation in islet autotransplantation. This first multicenter clinical trial in TPIAT highlights the potential for future multicenter collaborations.


Assuntos
Diabetes Mellitus , Transplante das Ilhotas Pancreáticas , Pancreatite Crônica , Receptores de Interleucina-8A/antagonistas & inibidores , Receptores de Interleucina-8B/antagonistas & inibidores , Adulto , Peptídeo C , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Pancreatectomia , Pancreatite Crônica/cirurgia , Transplantados , Transplante Autólogo , Resultado do Tratamento
18.
Aging (Albany NY) ; 13(10): 13405-13420, 2021 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-34038868

RESUMO

cDNA microarray data conducted by our group revealed overexpression of CXCL2 and CXCL8 in ovarian cancer (OC) microenvironment. Herein, we have proven that the chemokine receptor, CXCR2, is a pivotal molecule in re-sensitizing OC to cisplatin, and its inhibition decreases cell proliferation, viability, tumor size in cisplatin-resistant cells, as well as reversed the overexpression of mesenchymal epithelium transition markers. Altogether, our study indicates a central effect of CXCR2 in preventing tumor progression, due to acquisition of cisplatin chemoresistant phenotype by tumor cells, and patients' high lethality rate. We found that the overexpression of CXCR2 by OC cells is persistent and anomalously confined to the cellular nuclei, thus pointing to an urge in developing highly lipophilic molecules that promptly permeate cells, bind to and inhibit nuclear CXCR2 to fight OC, instead of relying on the high-cost genetic engineered cells.


Assuntos
Cisplatino/uso terapêutico , Neoplasias Ovarianas/tratamento farmacológico , Receptores de Interleucina-8B/antagonistas & inibidores , Animais , Linhagem Celular Tumoral , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Quimiocina CXCL2/metabolismo , Embrião de Galinha , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Feminino , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Invasividade Neoplásica , Proteínas de Neoplasias/metabolismo , Neovascularização Patológica/tratamento farmacológico , Neoplasias Ovarianas/irrigação sanguínea , Neoplasias Ovarianas/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de Interleucina-8B/metabolismo , Análise de Sobrevida , Serina-Treonina Quinases TOR/metabolismo
19.
Eur J Immunol ; 51(9): 2274-2280, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33963542

RESUMO

In humans, IL-8 (CXCL8) is a key chemokine for chemotaxis of polymorphonuclear leukocytes and monocytes/macrophages when acting on CXCR1 and CXCR2. CXCL8 activity on neutrophils includes chemotaxis and eliciting the extrusion of neutrophil extracellular traps (NETs). In this study, we show that concentrations of IL-8 that induce NETosis surpass in at least one order of magnitude those required to elicit chemoattraction in human neutrophils. IL-8-induced NETosis was less dependent on G-proteins than migration, while extracellular Ca+2 chelation similarly inhibited both processes. Reactive oxygen species (ROS) were more important for NETosis than for chemotaxis as evidenced by neutralization with N-acetyl -cysteine. Interestingly, selective blockade with anti-CXCR1 mAb inhibited NETosis much more readily than chemotaxis, while pharmacological inhibition of both CXCR1 and CXCR2, or selective inhibition for CXCR2 alone, similarly inhibited both functions. Together, these results propose a model according to which low concentrations of IL-8 in a gradient attract neutrophils to the inflammatory foci, while high receptor-saturating concentrations of IL-8 give rise to NETosis once leukocytes reach the core of the inflammatory insult.


Assuntos
Quimiotaxia/imunologia , Armadilhas Extracelulares/imunologia , Interleucina-8/imunologia , Neutrófilos/imunologia , Acetilcisteína/metabolismo , Humanos , Espécies Reativas de Oxigênio/metabolismo , Receptores de Interleucina-8A/antagonistas & inibidores , Receptores de Interleucina-8A/metabolismo , Receptores de Interleucina-8B/antagonistas & inibidores , Receptores de Interleucina-8B/metabolismo , Transdução de Sinais/imunologia
20.
Mol Cancer ; 20(1): 62, 2021 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-33814009

RESUMO

BACKGROUND: Drug-resistance and severe side effects of chemotherapeutic agents result in unsatisfied survival of patients with lung cancer. CXCLs/CXCR2 axis plays an important role in progression of cancer including lung cancer. However, the specific anti-cancer mechanism of targeting CXCR2 remains unclear. METHODS: Immunohistochemical analysis of CXCR2 was performed on the microarray of tumor tissues of clinical lung adenocarcinoma and lung squamous cell carcinoma patients. CCK8 test, TUNEL immunofluorescence staining, PI-Annexin V staining, ß-galactosidase staining, and Western blot were used to verify the role of CXCR2 in vitro. Animal models of tail vein and subcutaneous injection were applied to investigate the therapeutic role of targeting CXCR2. Flow cytometry, qRT-PCR, enzyme-linked immunosorbent assay (ELISA), and immunohistochemistry analysis were performed for further mechanistic investigation. RESULTS: The expression of CXCR2 was elevated in both human lung cancer stroma and tumor cells, which was associated with patients' prognosis. Inhibition of CXCR2 promoted apoptosis, senescence, epithelial-to-mesenchymal transition (EMT), and anti-proliferation of lung cancer cells. In vivo study showed that tumor-associated neutrophils (TANs) were significantly infiltrate into tumor tissues of mouse model, with up-regulated CXCLs/CXCR2 signaling and suppressive molecules, including Arg-1 and TGF-ß. SB225002, a selective inhibitor of CXCR2 showed promising therapeutic effect, and significantly reduced infiltration of neutrophils and enhanced anti-tumor T cell activity via promoting CD8+ T cell activation. Meanwhile, blockade of CXCR2 could enhance therapeutic effect of cisplatin via regulation of neutrophils infiltration. CONCLUSIONS: Our finds verify the therapeutic effects of targeting CXCR2 in lung cancer and uncover the potential mechanism for the increased sensitivity to chemotherapeutic agents by antagonists of CXCR2.


Assuntos
Antineoplásicos/farmacologia , Cisplatino/farmacologia , Neoplasias Pulmonares/metabolismo , Receptores de Interleucina-8B/antagonistas & inibidores , Adulto , Idoso , Animais , Apoptose , Biomarcadores , Linhagem Celular Tumoral , Proliferação de Células , Cisplatino/uso terapêutico , Modelos Animais de Doenças , Sinergismo Farmacológico , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Transição Epitelial-Mesenquimal/genética , Feminino , Expressão Gênica , Humanos , Imuno-Histoquímica , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/etiologia , Neoplasias Pulmonares/patologia , Ativação Linfocitária/efeitos dos fármacos , Ativação Linfocitária/imunologia , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Masculino , Camundongos , Pessoa de Meia-Idade , Terapia de Alvo Molecular , Estadiamento de Neoplasias , Infiltração de Neutrófilos , Prognóstico , Receptores de Interleucina-8B/genética , Receptores de Interleucina-8B/metabolismo , Microambiente Tumoral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...